Package: randomForest 4.7-1.2
randomForest: Breiman and Cutlers Random Forests for Classification and Regression
Classification and regression based on a forest of trees using random inputs, based on Breiman (2001) <doi:10.1023/A:1010933404324>.
Authors:
randomForest_4.7-1.2.tar.gz
randomForest_4.7-1.2.zip(r-4.5)randomForest_4.7-1.2.zip(r-4.4)randomForest_4.7-1.2.zip(r-4.3)
randomForest_4.7-1.2.tgz(r-4.4-x86_64)randomForest_4.7-1.2.tgz(r-4.4-arm64)randomForest_4.7-1.2.tgz(r-4.3-x86_64)randomForest_4.7-1.2.tgz(r-4.3-arm64)
randomForest_4.7-1.2.tar.gz(r-4.5-noble)randomForest_4.7-1.2.tar.gz(r-4.4-noble)
randomForest_4.7-1.2.tgz(r-4.4-emscripten)randomForest_4.7-1.2.tgz(r-4.3-emscripten)
randomForest.pdf |randomForest.html✨
randomForest/json (API)
NEWS
# Install 'randomForest' in R: |
install.packages('randomForest', repos = c('https://andyliaw-mrk.r-universe.dev', 'https://cloud.r-project.org')) |
- imports85 - The Automobile Data
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 months agofrom:0ad64d71e8. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 21 2024 |
R-4.5-win-x86_64 | OK | Nov 21 2024 |
R-4.5-linux-x86_64 | OK | Nov 21 2024 |
R-4.4-win-x86_64 | OK | Nov 21 2024 |
R-4.4-mac-x86_64 | OK | Nov 21 2024 |
R-4.4-mac-aarch64 | OK | Nov 21 2024 |
R-4.3-win-x86_64 | OK | Nov 21 2024 |
R-4.3-mac-x86_64 | OK | Nov 21 2024 |
R-4.3-mac-aarch64 | OK | Nov 21 2024 |
Exports:classCentercombinegetTreegrowimportancemarginMDSplotna.roughfixoutlierpartialPlotrandomForestrfcvrfImputerfNewstreesizetuneRFvarImpPlotvarUsed
Dependencies: